

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetraaquabis(thiourea-*kS*)cadmium(II) triaquatris(thiourea-*kS*)cadmium(II) disulfate

Masood Parvez, Farideh Jalilehvand* and Zahra Amini

Department of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4 Correspondence e-mail: faridehj@ucalgary.ca

Received 18 May 2012; accepted 12 June 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (N–C) = 0.016 Å; disorder in solvent or counterion; R factor = 0.047; wR factor = 0.099; data-to-parameter ratio = 22.1.

The title compound, $[Cd(CH_4N_2S)_2(H_2O)_4][Cd(CH_4N_2S)_3 (H_2O)_3](SO_4)_2$, contains two molecules of each of the Cd complexes and four sulfate ions in the asymmetric unit: all the Cd atoms exhibit distorted octahedral geometries. The Cd-S and Cd-O bond lengths around the Cd atoms in the bis(thiourea) cations are in the ranges 2.580(4)-2.599(4)and 2.323 (8)–2.421 (9) Å, respectively, and the S atoms are in a cis orientation. In the tris(thiourea) cations, the corresponding bond lengths around the Cd atoms are slightly longer and are in the ranges 2.559 (4)-2.706 (3) and 2.303 (7)-2.480 (10) Å, respectively, and the S atoms are in a fac disposition. The crystal structure features numerous N- $H \cdots O$, $N - H \cdots N$, $O - H \cdots O$ and $O - H \cdots N$ hydrogen bonds. Two O atoms of a sulfate anion were found to be disordered over two orientations in a 0.620 (9):0.380 (9) ratio. The crystal studied was a racemic twin with BASF = 0.17 (5)

Related literature

For the structures of other cadmium-sulfate-thiourea compounds, see: Cavaica *et al.* (1970); Corao & Baggio (1969); Oussaid *et al.* (2000). For the NMR measurement, see: Jalilehvand *et al.* (2012).

Experimental

 $Crystal \ data \\ [Cd(CH_4N_2S)_2(H_2O)_4]- \\ [Cd(CH_4N_2S)_3(H_2O)_3](SO_4)_2 \\$

 $M_r = 923.64$ Monoclinic, *Pc* a = 10.9941 (3) Å b = 11.7602 (3) Å c = 24.0100 (5) Å $\beta = 98.9169 (12)^{\circ}$ $V = 3066.80 (13) \text{ Å}^{3}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1997) $T_{min} = 0.876, T_{max} = 0.909$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.099$ S = 1.089995 reflections 453 parameters Z = 4Mo K α radiation $\mu = 1.94$ mm⁻¹ T = 173 K $0.07 \times 0.06 \times 0.05$ mm

16186 measured reflections 9995 independent reflections 8817 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.037$

2 restraints H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.78\ e\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.64\ e\ \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1A···O26 ⁱ	0.88	2.14	2.958 (16)	154
$N1-H1A\cdots O26'^{i}$	0.88	2.24	3.11 (2)	168
$N1-H1B\cdots O17^{i}$	0.88	2.10	2.927 (15)	156
$N1-H1B\cdotsO15^{i}$	0.88	2.55	3.111 (14)	122
$N2-H2A\cdots O24^{i}$	0.88	2.08	2.934 (15)	163
$N2 - H2B \cdots O1$	0.88	2.02	2.875 (14)	165
$N3-H3A\cdots O27$	0.88	2.14	3.014 (14)	169
$N4 - H4A \cdots O28$	0.88	2.17	3.000 (13)	157
$N4 - H4B \cdots O3$	0.88	2.21	3.028 (12)	155
$N4 - H4B \cdots O2$	0.88	2.63	3.183 (12)	121
$O1 - H11 \cdots O29^{ii}$	0.82	1.96	2,743 (13)	160
$01 - H12 \cdots 014$	0.82	1.97	2.770(12)	164
$\Omega^2 - H^{21} \cdots \Omega^{26^{ii}}$	0.82	2.05	2.636(12)	128
$\Omega^2 - H^{21} \cdots \Omega^{26'^{ii}}$	0.82	2.12	2.856(12)	150
O_{3} -H32 O_{18}^{ii}	0.82	1 91	2.650(10) 2.679(10)	156
$04 - H41 \cdots 015^{ii}$	0.82	1.91	2.673 (13)	172
$O_4 = H_{42} + O_{13}$	0.81	2.16	2.071(13)	172
$N5 - H54 \dots O24^{i}$	0.81	2.10	3000(11)	175
$N6 H64 \dots O23^{i}$	0.88	2.15	2.000(11)	162
$N6 = H6R \dots O7$	0.88	2.14	2.980(11) 2.982(12)	102
N6 H6P O6	0.88	2.17	2.362(12) 2.157(12)	133
$N_7 H_7 A O_{77}$	0.88	2.39	2.028(17)	125
N7 H7R O5	0.88	2.08	2.938(17) 2.015(14)	163
$N = 11/D \cdots 0.5$	0.88	2.00	2.913(14)	163
	0.88	2.14	2.969(13)	102
$N_0 = \Pi_0 D_1 \cdots O_2 I$	0.00	2.10	2.952(15)	139
$N\delta = H\delta B \cdots OI9$	0.88	2.05	3.223(14)	124
O5-H52O11	0.82	2.09	2.007(15)	104
$O_5 - H_5 I_{1} \cdots N/$	0.85	2.40	2.915(14)	114
$O_0 - H_{02} \cdot \cdot \cdot O_{30}$	0.83	1.84	2.641(11)	162
$O/-H/2 \cdots O22$	0.82	1.95	2.718 (11)	155
$O8 - H81 \cdots O16$	0.83	1.96	2.756 (12)	162
08-H82010	0.81	2.18	2.922 (13)	152
$N9 - H9A \cdots O21$	0.88	2.40	3.150 (17)	143
$N9 - H9A \cdots O20$	0.88	2.50	3.320 (16)	156
$N9 - H9B \cdot \cdot \cdot O2/$	0.88	1.98	2.834 (17)	164
$N10 - H10A \cdots O21$	0.88	2.26	3.040(17)	148
$N10 - H10B \cdots O10$	0.88	2.10	2.954 (15)	163
$N11 - H11A \cdots O18^{\circ}$	0.88	1.98	2.855 (12)	177
$N11 - H11B \cdots O9$	0.88	2.13	2.994 (12)	167
$N12 - H12A \cdots O1/4$	0.88	1.93	2.797 (12)	169
$N13 - H13A \cdots O2^{n}$	0.88	2.36	3.193 (11)	158
$N13 - H13B \cdots O28^{N}$	0.88	1.98	2.848 (13)	168
$N14 - H14A \cdots O26^{\circ}$	0.88	2.22	2.980 (13)	145
$O9 - H91 \cdot \cdot \cdot O28^{iv}$	0.82	2.03	2.810 (12)	159
$O9 - H92 \cdot \cdot \cdot O20^{\circ \circ}$	0.82	1.94	2.721 (11)	159
$O9 - H92 \cdot \cdot \cdot O22^{\prime\prime}$	0.82	2.54	3.189 (10)	137
O10−H101···O9	0.81	2.67	3.331 (11)	139
$O10-H102 \cdot \cdot \cdot O25'^{\text{IV}}$	0.82	1.77	2.57 (2)	164
$O10 - H102 \cdot \cdot \cdot O25^{iv}$	0.82	1.99	2.761 (13)	156
$O11 - H111 \cdots O25^{W}$	0.82	2.15	2.851 (14)	143
$O11 - H111 \cdot \cdot \cdot O26'^{iv}$	0.82	2.18	2.972 (18)	163

metal-organic compounds

$D-\mathrm{H}\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O11-H112···O29 ^{iv}	0.82	1.96	2.718 (13)	153
N15-H15A···O30	0.88	2.44	3.222 (12)	148
$N15-H15A\cdots N8$	0.88	2.69	3.331 (15)	131
$N16-H16A\cdots O6^{vi}$	0.88	2.34	3.184 (11)	161
$N16-H16B\cdots O23^{ii}$	0.88	1.99	2.866 (11)	172
$N17 - H17A \cdot \cdot \cdot O21^{iii}$	0.88	1.99	2.864 (13)	176
N18-H18A···O22 ⁱⁱⁱ	0.88	1.98	2.846 (12)	169
N18−H18B····O12	0.88	2.15	2.998 (11)	163
N19 $-$ H19 A \cdots O17 ^{vii}	0.88	2.42	3.174 (15)	145
N19-H19A···O16 ^{vii}	0.88	2.43	3.258 (15)	156
N19 $-$ H19 B ···O24 ⁱ	0.88	2.03	2.887 (15)	163
$N19-H19B\cdots O25'^{i}$	0.88	2.65	3.27 (2)	129
$N20-H20A\cdots O17^{vii}$	0.88	2.21	3.018 (16)	153
N20−H20B···O13	0.88	2.11	2.966 (15)	165
O12-H121O23 ⁱⁱ	0.82	2.04	2.846 (10)	167
O12−H122···O16 ^{viii}	0.81	2.06	2.740 (9)	140
O13-H131O19 ⁱⁱ	0.82	1.88	2.694 (12)	171
O13−H132···O4 ⁱⁱⁱ	0.82	2.23	2.981 (12)	153
$O14-H141\cdots O20^{ii}$	0.82	1.90	2.714 (11)	173
$O14-H142\cdots O25^{ii}$	0.82	2.10	2.750 (14)	135
$O14-H142\cdots O25'^{ii}$	0.82	2.00	2.79 (2)	161

Symmetry codes: (i) $x + 1, -y + 1, z - \frac{1}{2}$; (ii) $x, -y + 1, z - \frac{1}{2}$; (iii) x, y + 1, z; (iv) x + 1, y, z; (v) x + 1, y + 1, z; (vi) x - 1, y, z; (vii) $x + 1, -y + 2, z - \frac{1}{2}$; (viii) $x, -y + 2, z - \frac{1}{2}$.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALE-PACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

This research was supported by the National Science and Engineering Research Council (NSERC) of Canada, the Canadian Foundation for Innovation (CFI) and the Province of Alberta (Department of Innovation and Science).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6807).

References

- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Cavaica, L., Villa, A. C., Mangia, A. & Palmeiri, C. (1970). *Inorg. Chim. Acta*, **4**, 463–470.
- Corao, E. & Baggio, S. (1969). Inorg. Chim. Acta, 3, 617-622.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.
- Jalilehvand, F., Amini, Z. & Parmar, K. (2012). Inorg. Chem. Submitted.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Oussaid, M., Becker, P. & Carabatos-Nédelec, C. (2000). J. Raman Spectrosc. 31, 529-533.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, m949-m950 [doi:10.1107/S1600536812026682]

Tetraaquabis(thiourea-*kS*)cadmium(II) triaquatris(thiourea-*kS*)cadmium(II) disulfate

Masood Parvez, Farideh Jalilehvand and Zahra Amini

Comment

A survey in the crystal structure database shows that mixing cadmium sulfate (CdSO₄) with thiourea (TU) in the mole ratio 1:3 results in either monomeric [Cd(TU)₃(SO₄)] (Oussaid *et al.*, 2000; Cavaica *et al.*, 1970), (or dimeric [Cd(μ -TU) (TU)₂(SO₄)]₂ complexes (Corao & Baggio, 1969) with the cadmium ion coordinating four (CdS₃O) or five (CdS₄O) ligand atoms, respectively.

With intention to prepare the mononuclear $[Cd(TU)_3(SO_4)]$ complex for a solid state ¹¹³Cd NMR measurement (Jalilehvand *et al.*, 2012), a solution was prepared of a mixture of CdSO₄8/3H₂O and thiourea in 1:3.8 mole ratio in hot water, and slowly evaporated resulting in colorless crystals. Elemental analysis of a ground sample *(i)* used for the solid state ¹¹³Cd NMR spectroscopy showed that the bulk of the crystalline solid mainly consisted of the $[Cd(TU)_3(SO_4)]$ complex (see Special details section). However, elemental analyses of two random samples of the colorless crystals *(ii and iii)* showed that the sample was inhomogeneous. An X-ray crystallographic structure determination of the colorless crystal. To our knowledge, this is the first report on the structure of hydrated Cd(II) thiourea complexes.

The asymmetric unit of the title co-crystal contains two cadmium(II) complexes of each type together with four sulfate ions (Fig. 1). All Cd atoms exhibit distorted octahedral geometry. The Cd–S and Cd–O distances around Cd1 and Cd2 atoms in the bis(thiourea) complex, cis-[Cd(TU)₂(H₂O)₄]²⁺, lie in the ranges 2.580 (4) - 2.599 (4) Å and 2.323 (8) - 2.421 (9) Å, respectively. In the tris(thiourea) complex, fac-[Cd(TU)₃(H₂O)₃]²⁺, the corresponding bond lengths around Cd3 and Cd4 atoms are slightly longer and lie in the ranges 2.559 (4) - 2.706 (3) Å and 2.303 (7) - 2.480 (10) Å, respectively. The crystal structure is stabilized by strong hydrogen bonds (Tab. 1).

Experimental

A colorless solution containing a mixture of $CdSO_48/3(H_2O)$ (1.505 g, 5.87 mmol) and thiourea (1.340 g, 22.33 mmol) in hot water (10 ml) was prepared. Slow evaporation of this solution resulted in an inhomogeneous mixture of colorless crystals, mainly consisting of $[Cd(TU)_3(SO_4)]$ complex, as well as *cis*- $[Cd(TU)_2(H_2O)_4](SO_4)$ and *fac*- $[Cd(TU)_3(H_2O)_3]$ (SO₄) complexes that were co-crystallized in the same unit cell.

Refinement

All H atoms were positioned geometrically and refined using a riding model, and the $U_{iso}(H)$ were allowed at $1.2U_{eq}$ (parent atom). Water H-atoms were contrained at distances O—H = 0.82 Å and EADP commands were used to model the disorder. An absolute structure using Flack method was not determined as the crystals were composed of racemic twins with BASF = 0.17 (5); Fridel pairs were merged. Two oxygen atoms of a sulfate anion were disordered over two sites each in a ratio 0.620 (9):0.380 (9). A refinement of the structure with half the current length of the cell

axis-*b*, allowing half of the contents of the unit cell, resulted in a grossly disordered model which was therefore ruled out as the unit cell. Therefore, the model was refined in the current supercell presented in this paper.

Computing details

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The molecular structure of the contents of an asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level.

Figure 2

The content of a unit cell. For the cadmium complexes in the left part of the cell only the sulfur atoms are shown for clarity.

Tetraaquabis(thiourea-κS)cadmium(II) triaquatris(thiourea-κS)cadmium(II) disulfate

Crystal data

$[Cd(CH_4N_2S)_2(H_2O)_4][Cd(CH_4N_2S)_3(H_2O)_3]$	Z = 4
$(SO_4)_2$	F(000) = 1848
$M_r = 923.64$	$D_{\rm x} = 2.000 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, Pc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P -2yc	Cell parameters from 2175 reflections
a = 10.9941 (3) Å	$\theta = 3.4 - 30.0^{\circ}$
b = 11.7602 (3) Å	$\mu = 1.94 \text{ mm}^{-1}$
c = 24.0100 (5) Å	T = 173 K
$\beta = 98.9169 \ (12)^{\circ}$	Prism, colorless
$V = 3066.80 (13) \text{ Å}^3$	$0.07 \times 0.06 \times 0.05 \text{ mm}$
Data collection	
Nonius KappaCCD	16186 measured reflections
diffractometer	9995 independent reflections
Radiation source: fine-focus sealed tube	8817 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.037$
ω and φ scans	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.4^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 13$
(SORTAV; Blessing, 1997)	$k = -13 \rightarrow 13$
$T_{\min} = 0.876, \ T_{\max} = 0.909$	$l = -28 \rightarrow 28$
Refinement	
Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.047$	Secondary atom site location: difference Fourier
$wR(F^2) = 0.099$	map
S = 1.08	Hydrogen site location: inferred from
9995 reflections	neighbouring sites
453 parameters	H-atom parameters constrained
2 restraints	$w = 1/[\sigma^2(F_o^2) + (0.0102P)^2 + 30.5291P]$ where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\rm max} = 0.004$	Absolute structure: Flack, H. D. (1983). Acta
$\Delta \rho_{\rm max} = 0.78 \ {\rm e} \ {\rm \AA}^{-3}$	<i>Cryst.</i> A 39 , 876–881
$\Delta \rho_{\rm min} = -0.64 \text{ e } \text{\AA}^{-3}$	Flack parameter: 0.15 (5)

Special details

Experimental. Elemental analysis of a ground sample *(i)* used for the solid state ¹¹³Cd NMR spectroscopy: C = 8.44%, H = 2.62%, N = 19.27% (calculated for $[Cd(TU)_3(SO_4)]$: $CdC_3H_{12}N_6O_4S_4$ (M.W. = 436.7), C = 8.24%, H = 2.75%, N = 19.23%). Elemental analyses of two random samples of the colorless crystals: *(ii)* exp.: C = 8.23%, H = 2.68%, N = 19.08%, and *(iii)* exp.: C = 7.44%, H = 3.01%, N = 17.22% (calculated for $[Cd(TU)_3(H_2O_3)](SO_4)$: $CdC_3H_{18}N_6O_7S_4$ (M.W. = 490.7), C = 7.33%, H = 3.67%, N = 17.12%).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cd1	0.43936 (7)	0.41388 (8)	0.00967 (3)	0.0175 (3)	
S1	0.6026 (4)	0.3423 (3)	-0.04845 (17)	0.0207 (9)	
S2	0.6146 (3)	0.4338 (3)	0.09512 (14)	0.0282 (6)	
C1	0.7138 (13)	0.4492 (12)	-0.0421 (5)	0.0176 (17)	
C2	0.5530 (9)	0.4611 (8)	0.1553 (4)	0.0176 (17)	
N1	0.8306 (12)	0.4197 (10)	-0.0393 (5)	0.0261 (12)	
H1A	0.8882	0.4724	-0.0362	0.031*	
H1B	0.8509	0.3475	-0.0405	0.031*	
N2	0.6847 (11)	0.5571 (11)	-0.0403 (5)	0.0261 (12)	
H2A	0.7428	0.6093	-0.0372	0.031*	
H2B	0.6071	0.5774	-0.0421	0.031*	
N3	0.6216 (8)	0.5129 (8)	0.1981 (4)	0.0261 (12)	
H3A	0.5922	0.5247	0.2297	0.031*	
H3B	0.6965	0.5356	0.1950	0.031*	
N4	0.4413 (8)	0.4275 (8)	0.1604 (4)	0.0261 (12)	
H4A	0.4124	0.4395	0.1921	0.031*	
H4B	0.3953	0.3930	0.1321	0.031*	
O1	0.4217 (8)	0.5795 (8)	-0.0511 (4)	0.0227 (9)	
H11	0.4015	0.5634	-0.0844	0.027*	
H12	0.3894	0.6411	-0.0460	0.027*	
O2	0.2817 (7)	0.5077 (6)	0.0450 (3)	0.0227 (9)	
H21	0.2345	0.5180	0.0155	0.027*	
H22	0.3234	0.5657	0.0511	0.027*	
O3	0.3575 (7)	0.2714 (6)	0.0616 (3)	0.0227 (9)	
H31	0.4142	0.2255	0.0699	0.027*	
H32	0.2932	0.2347	0.0591	0.027*	
O4	0.3053 (9)	0.3178 (7)	-0.0617 (4)	0.0227 (9)	
H41	0.2319	0.3144	-0.0588	0.027*	
H42	0.3123	0.3608	-0.0875	0.027*	
Cd2	0.94999 (7)	0.83626 (9)	0.28083 (3)	0.0174 (3)	
S3	0.7784 (3)	0.8140 (3)	0.19488 (14)	0.0285 (6)	
S4	0.7831 (4)	0.9044 (3)	0.33779 (17)	0.0196 (9)	
C3	0.8400 (10)	0.7856 (9)	0.1342 (4)	0.024 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C4	0.6721 (13)	0.7993 (12)	0.3289 (5)	0.015 (2)
N5	0.7722 (8)	0.7352 (7)	0.0914 (4)	0.0238 (11)
H5A	0.8036	0.7198	0.0607	0.029*
H5B	0.6954	0.7168	0.0935	0.029*
N6	0.9549 (8)	0.8122 (7)	0.1300 (4)	0.0238 (11)
H6A	0.9846	0.7961	0.0989	0.029*
H6B	1.0017	0.8459	0.1582	0.029*
N7	0.7024 (10)	0.6918 (11)	0.3256 (5)	0.0238 (11)
H7A	0.6452	0.6389	0.3227	0.029*
H7B	0.7800	0.6726	0.3263	0.029*
N8	0.5568 (12)	0.8291 (10)	0.3279 (5)	0.0238 (11)
H8A	0.4989	0.7768	0.3250	0.029*
H8B	0.5373	0.9013	0.3301	0.029*
05	0.9699 (8)	0.6725 (8)	0.3411 (4)	0.0275 (10)
H51	0.9203	0.6571	0.3638	0.033*
H52	1.0087	0.6135	0.3386	0.033*
O6	1.1097 (7)	0.7376 (7)	0.2461 (3)	0.0275 (10)
H61	1.0851	0.6714	0.2438	0.033*
H62	1.1831	0.7350	0.2601	0.033*
07	1.0359 (7)	0.9713 (6)	0.2252 (3)	0.0275 (10)
H71	1.0057	1.0222	0.2418	0.033*
H72	1.1109	0.9747	0.2344	0.033*
08	1.0807 (10)	0.9404 (8)	0.3495 (4)	0.0275 (10)
H81	1.0944	0.9406	0.3842	0.033*
H82	1.0377	0.9954	0.3398	0.033*
Cd3	0.95867 (7)	0.33264 (8)	0.27590 (3)	0.0184 (3)
S5	0.7880 (4)	0.4025 (3)	0.32882 (17)	0.0185 (8)
S 6	0.8492 (3)	0.1824 (3)	0.20761 (14)	0.0264 (6)
S 7	0.9420 (3)	0.5165 (2)	0.20781 (14)	0.0225 (6)
C5	0.6854 (14)	0.2918 (12)	0.3271 (6)	0.0196 (14)
C6	0.9099 (10)	0.1920 (9)	0.1457 (4)	0.0196 (14)
C7	0.9997 (10)	0.4949 (9)	0.1465 (4)	0.0196 (14)
N9	0.5673 (12)	0.3151 (12)	0.3264 (5)	0.0306 (10)
H9A	0.5142	0.2595	0.3277	0.037*
H9B	0.5419	0.3861	0.3247	0.037*
N10	0.7216 (11)	0.1847 (12)	0.3297 (5)	0.0306 (10)
H10A	0.6675	0.1299	0.3309	0.037*
H10B	0.7997	0.1680	0.3302	0.037*
N11	1 0266 (9)	0 2179 (8)	0 1451 (4)	0.0306 (10)
H11A	1.0559	0.2182	0.1130	0.037*
H11B	1 0750	0 2349	0 1767	0.037*
N12	0.8397 (9)	0.1671 (9)	0.0984(4)	0.0306(10)
H12A	0.8702	0.1677	0.0666	0.037*
H12B	0.7618	0.1497	0.0983	0.037*
N13	1 1188 (9)	0.5005 (8)	0.0903 0.1441 (4)	0.037
H13A	1 1453	0.4926	0 1116	0.037*
H13R	1 1716	0.5121	0 1751	0.037*
N14	0 9224 (9)	0 4772 (9)	0.0987(4)	0.0306 (10)
H14A	0.9512	0.4695	0.0667	0.037*
1117/1	0.7512	0.4075	0.0007	0.057

H14B	0.8427	0.4731	0.0992	0.037*
O9	1.1578 (7)	0.3016 (6)	0.2561 (3)	0.0205 (10)
H91	1.1995	0.3594	0.2624	0.025*
H92	1.1970	0.2495	0.2732	0.025*
O10	0.9931 (7)	0.1753 (7)	0.3437 (4)	0.0205 (10)
H101	1.0583	0.1809	0.3319	0.025*
H102	1.0039	0.1975	0.3765	0.025*
011	1.0797 (9)	0.4490 (8)	0.3510 (4)	0.0205 (10)
H111	1.0876	0.4327	0.3847	0.025*
H112	1.1392	0.4880	0.3467	0.025*
Cd4	0.42807 (7)	0.91384 (8)	0.01451 (3)	0.0159 (3)
S8	0.4471 (3)	0.7294 (2)	0.08265 (13)	0.0222 (6)
S9	0.5445 (3)	1.0590 (2)	0.08499 (14)	0.0226 (6)
S10	0.6009 (4)	0.8462 (3)	-0.03811 (18)	0.0202 (9)
C8	0.3906 (10)	0.7517 (8)	0.1463 (4)	0.0199 (14)
C9	0.4804 (10)	1.0523 (8)	0.1473 (4)	0.0199 (14)
C10	0.7041 (15)	0.9583 (12)	-0.0345 (6)	0.0199 (14)
N15	0.4670 (9)	0.7666 (8)	0.1924 (4)	0.0249 (9)
H15A	0.4394	0.7724	0.2248	0.030*
H15B	0.5465	0.7708	0.1914	0.030*
N16	0.2711 (9)	0.7451 (7)	0.1469 (4)	0.0249 (9)
H16A	0.2422	0.7509	0.1790	0.030*
H16B	0.2202	0.7350	0.1152	0.030*
N17	0.5546 (9)	1.0710 (8)	0.1947 (4)	0.0249 (9)
H17A	0.5261	1.0687	0.2269	0.030*
H17B	0.6329	1.0857	0.1942	0.030*
N18	0.3642 (8)	1.0303 (7)	0.1464 (4)	0.0249 (9)
H18A	0.3334	1.0275	0.1781	0.030*
H18B	0.3162	1.0181	0.1140	0.030*
N19	0.8225 (12)	0.9344 (10)	-0.0319(5)	0.0249 (9)
H19A	0.8769	0.9898	-0.0296	0.030*
H19B	0.8468	0.8632	-0.0324	0.030*
N20	0.6692 (11)	1.0658 (10)	-0.0336(5)	0.0249 (9)
H20A	0.7245	1.1204	-0.0313	0.030*
H20B	0.5908	1.0827	-0.0352	0.030*
012	0.2333 (7)	0.9439 (6)	0.0356 (3)	0.0181 (10)
H121	0.1877	0.8906	0.0399	0.022*
H122	0.2103	0.9712	0.0046	0.022*
013	0.3967 (7)	1.0792 (7)	-0.0483(3)	0.0181 (10)
H131	0.3797	1.0641	-0.0819	0.022*
H132	0.3594	1 1377	-0.0428	0.022*
014	0.3135 (9)	0 7928 (7)	-0.0567(4)	0.0181 (10)
H141	0.3186	0.8041	-0.0898	0.022*
H142	0.2419	0.8054	-0.0526	0.022*
S11	0.0446(4)	0.8135 (3)	0 48584 (15)	0.0170 (8)
015	0.0669 (7)	0.7164 (6)	0.4470 (3)	0.0171 (9)
016	0.0752 (6)	0.9236 (6)	0.4635 (3)	0.0171 (9)
017	-0.0875(8)	0.8114 (7)	0.4923 (3)	0.0171 (9)
018	0 1206 (7)	0 7914 (6)	0 5408 (3)	0.0171(9)
010		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

S12	0.3433 (4)	0.0625 (3)	0.30619 (15)	0.0167 (8)	
019	0.3147 (8)	-0.0269 (7)	0.3431 (4)	0.0285 (11)	
O20	0.3087 (8)	0.1721 (7)	0.3313 (3)	0.0285 (11)	
O21	0.4753 (9)	0.0635 (8)	0.3028 (4)	0.0285 (11)	
O22	0.2695 (8)	0.0525 (7)	0.2497 (4)	0.0285 (11)	
S13	0.0318 (3)	0.3167 (3)	0.49290 (15)	0.0148 (8)	
O23	0.1037 (7)	0.2637 (6)	0.5428 (3)	0.0135 (9)	
O24	-0.0988 (8)	0.2973 (7)	0.4912 (3)	0.0135 (9)	
O25	0.0799 (9)	0.2921 (9)	0.4416 (4)	0.0135 (9)	0.620 (9)
O26	0.0505 (9)	0.4439 (9)	0.5051 (4)	0.0135 (9)	0.620 (9)
O25′	0.0618 (16)	0.2170 (16)	0.4489 (7)	0.0135 (9)	0.380 (9)
O26′	0.0622 (15)	0.4256 (14)	0.4727 (7)	0.0135 (9)	0.380 (9)
S14	0.3566 (4)	0.5588 (3)	0.29742 (17)	0.0209 (8)	
O27	0.4891 (10)	0.5403 (9)	0.2982 (5)	0.0376 (11)	
O28	0.2885 (8)	0.5043 (7)	0.2466 (4)	0.0376 (11)	
O29	0.3164 (8)	0.5118 (7)	0.3478 (4)	0.0376 (11)	
030	0.3337 (8)	0.6840 (7)	0.2958 (4)	0.0376 (11)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.0161 (6)	0.0184 (5)	0.0178 (5)	-0.0019 (4)	0.0017 (5)	0.0003 (4)
S 1	0.0178 (19)	0.0174 (16)	0.027 (2)	-0.0038 (13)	0.0040 (15)	-0.0045 (13)
S2	0.0147 (13)	0.0521 (18)	0.0180 (13)	-0.0012 (13)	0.0031 (11)	-0.0086 (13)
C1	0.018 (4)	0.024 (4)	0.010 (3)	0.004 (3)	0.001 (3)	-0.006 (3)
C2	0.018 (4)	0.024 (4)	0.010 (3)	0.004 (3)	0.001 (3)	-0.006 (3)
N1	0.020 (3)	0.035 (3)	0.024 (3)	-0.005 (2)	0.006 (2)	-0.004 (2)
N2	0.020 (3)	0.035 (3)	0.024 (3)	-0.005 (2)	0.006 (2)	-0.004 (2)
N3	0.020 (3)	0.035 (3)	0.024 (3)	-0.005 (2)	0.006 (2)	-0.004 (2)
N4	0.020 (3)	0.035 (3)	0.024 (3)	-0.005 (2)	0.006 (2)	-0.004 (2)
01	0.018 (2)	0.024 (2)	0.025 (2)	-0.0018 (17)	0.0021 (17)	0.0031 (17)
O2	0.018 (2)	0.024 (2)	0.025 (2)	-0.0018 (17)	0.0021 (17)	0.0031 (17)
03	0.018 (2)	0.024 (2)	0.025 (2)	-0.0018 (17)	0.0021 (17)	0.0031 (17)
O4	0.018 (2)	0.024 (2)	0.025 (2)	-0.0018 (17)	0.0021 (17)	0.0031 (17)
Cd2	0.0125 (6)	0.0234 (5)	0.0170 (5)	-0.0011 (4)	0.0046 (4)	-0.0009 (4)
S3	0.0166 (14)	0.0519 (19)	0.0171 (13)	0.0006 (13)	0.0028 (11)	-0.0040 (13)
S4	0.017 (2)	0.0209 (16)	0.0234 (18)	-0.0031 (14)	0.0098 (15)	-0.0071 (13)
C3	0.023 (6)	0.027 (6)	0.018 (5)	0.000 (5)	-0.004 (4)	0.006 (4)
C4	0.014 (5)	0.023 (5)	0.007 (4)	-0.004 (4)	0.002 (4)	0.001 (4)
N5	0.014 (3)	0.031 (3)	0.028 (3)	0.000 (2)	0.008 (2)	-0.004 (2)
N6	0.014 (3)	0.031 (3)	0.028 (3)	0.000 (2)	0.008 (2)	-0.004 (2)
N7	0.014 (3)	0.031 (3)	0.028 (3)	0.000 (2)	0.008 (2)	-0.004 (2)
N8	0.014 (3)	0.031 (3)	0.028 (3)	0.000 (2)	0.008 (2)	-0.004 (2)
05	0.024 (2)	0.032 (2)	0.026 (2)	0.0030 (18)	0.0040 (18)	0.0001 (18)
06	0.024 (2)	0.032 (2)	0.026 (2)	0.0030 (18)	0.0040 (18)	0.0001 (18)
O7	0.024 (2)	0.032 (2)	0.026 (2)	0.0030 (18)	0.0040 (18)	0.0001 (18)
08	0.024 (2)	0.032 (2)	0.026 (2)	0.0030 (18)	0.0040 (18)	0.0001 (18)
Cd3	0.0166 (6)	0.0212 (5)	0.0174 (6)	0.0002 (4)	0.0027 (4)	-0.0015 (4)
S5	0.0170 (19)	0.0155 (15)	0.0241 (18)	-0.0021 (13)	0.0064 (14)	-0.0035 (12)
S6	0.0256 (15)	0.0354 (16)	0.0195 (13)	-0.0119 (12)	0.0079 (11)	-0.0114 (11)

S7	0.0198 (14)	0.0270 (14)	0.0210 (13)	-0.0006 (11)	0.0044 (11)	0.0063 (11)
C5	0.017 (3)	0.025 (3)	0.017 (3)	-0.004 (3)	0.002 (3)	0.002 (3)
C6	0.017 (3)	0.025 (3)	0.017 (3)	-0.004(3)	0.002 (3)	0.002 (3)
C7	0.017 (3)	0.025 (3)	0.017 (3)	-0.004 (3)	0.002 (3)	0.002 (3)
N9	0.023 (2)	0.048 (3)	0.022 (2)	-0.008(2)	0.0042 (17)	-0.0047 (18)
N10	0.023 (2)	0.048 (3)	0.022 (2)	-0.008(2)	0.0042 (17)	-0.0047 (18)
N11	0.023 (2)	0.048 (3)	0.022 (2)	-0.008(2)	0.0042 (17)	-0.0047 (18)
N12	0.023 (2)	0.048 (3)	0.022 (2)	-0.008(2)	0.0042 (17)	-0.0047 (18)
N13	0.023 (2)	0.048 (3)	0.022 (2)	-0.008(2)	0.0042 (17)	-0.0047 (18)
N14	0.023 (2)	0.048 (3)	0.022 (2)	-0.008(2)	0.0042 (17)	-0.0047 (18)
09	0.015 (2)	0.023 (2)	0.021 (2)	-0.0054 (19)	-0.0016 (18)	-0.0028 (19)
O10	0.015 (2)	0.023 (2)	0.021 (2)	-0.0054 (19)	-0.0016 (18)	-0.0028 (19)
011	0.015 (2)	0.023 (2)	0.021 (2)	-0.0054 (19)	-0.0016 (18)	-0.0028 (19)
Cd4	0.0141 (6)	0.0188 (5)	0.0154 (5)	-0.0011 (4)	0.0039 (4)	-0.0014 (4)
S 8	0.0228 (14)	0.0256 (14)	0.0175 (13)	0.0002 (11)	0.0012 (11)	0.0043 (11)
S9	0.0198 (14)	0.0319 (15)	0.0175 (12)	-0.0061 (11)	0.0070 (10)	-0.0024 (11)
S10	0.018 (2)	0.0168 (16)	0.0280 (19)	-0.0023 (13)	0.0086 (15)	-0.0014 (13)
C8	0.027 (4)	0.013 (3)	0.022 (3)	-0.002 (3)	0.011 (3)	0.002 (3)
С9	0.027 (4)	0.013 (3)	0.022 (3)	-0.002(3)	0.011 (3)	0.002 (3)
C10	0.027 (4)	0.013 (3)	0.022 (3)	-0.002(3)	0.011 (3)	0.002 (3)
N15	0.024 (2)	0.030 (2)	0.022 (2)	-0.0051 (18)	0.0038 (17)	0.0013 (17)
N16	0.024 (2)	0.030 (2)	0.022 (2)	-0.0051 (18)	0.0038 (17)	0.0013 (17)
N17	0.024 (2)	0.030 (2)	0.022 (2)	-0.0051 (18)	0.0038 (17)	0.0013 (17)
N18	0.024 (2)	0.030 (2)	0.022 (2)	-0.0051 (18)	0.0038 (17)	0.0013 (17)
N19	0.024 (2)	0.030 (2)	0.022 (2)	-0.0051 (18)	0.0038 (17)	0.0013 (17)
N20	0.024 (2)	0.030 (2)	0.022 (2)	-0.0051 (18)	0.0038 (17)	0.0013 (17)
012	0.019 (2)	0.025 (2)	0.011 (2)	0.003 (2)	0.0043 (18)	-0.0006 (18)
013	0.019 (2)	0.025 (2)	0.011 (2)	0.003 (2)	0.0043 (18)	-0.0006 (18)
014	0.019 (2)	0.025 (2)	0.011 (2)	0.003 (2)	0.0043 (18)	-0.0006 (18)
S11	0.0145 (18)	0.0192 (15)	0.0169 (16)	0.0014 (13)	0.0007 (13)	-0.0014 (12)
015	0.016 (2)	0.024 (2)	0.0121 (17)	0.0030 (16)	0.0037 (15)	-0.0031 (15)
016	0.016 (2)	0.024 (2)	0.0121 (17)	0.0030 (16)	0.0037 (15)	-0.0031 (15)
017	0.016 (2)	0.024 (2)	0.0121 (17)	0.0030 (16)	0.0037 (15)	-0.0031 (15)
018	0.016 (2)	0.024 (2)	0.0121 (17)	0.0030 (16)	0.0037 (15)	-0.0031 (15)
S12	0.0132 (17)	0.0206 (15)	0.0173 (17)	0.0013 (13)	0.0056 (13)	-0.0020 (13)
019	0.023 (2)	0.032 (2)	0.030 (2)	0.0016 (18)	0.0043 (18)	0.0011 (19)
O20	0.023 (2)	0.032 (2)	0.030 (2)	0.0016 (18)	0.0043 (18)	0.0011 (19)
O21	0.023 (2)	0.032 (2)	0.030 (2)	0.0016 (18)	0.0043 (18)	0.0011 (19)
O22	0.023 (2)	0.032 (2)	0.030 (2)	0.0016 (18)	0.0043 (18)	0.0011 (19)
S13	0.0094 (17)	0.0220 (16)	0.0132 (15)	0.0023 (12)	0.0022 (12)	-0.0002 (12)
O23	0.011 (2)	0.021 (2)	0.0093 (19)	0.0021 (17)	0.0047 (16)	0.0007 (16)
O24	0.011 (2)	0.021 (2)	0.0093 (19)	0.0021 (17)	0.0047 (16)	0.0007 (16)
O25	0.011 (2)	0.021 (2)	0.0093 (19)	0.0021 (17)	0.0047 (16)	0.0007 (16)
O26	0.011 (2)	0.021 (2)	0.0093 (19)	0.0021 (17)	0.0047 (16)	0.0007 (16)
O25′	0.011 (2)	0.021 (2)	0.0093 (19)	0.0021 (17)	0.0047 (16)	0.0007 (16)
O26′	0.011 (2)	0.021 (2)	0.0093 (19)	0.0021 (17)	0.0047 (16)	0.0007 (16)
S14	0.0185 (19)	0.0208 (16)	0.0233 (18)	0.0006 (14)	0.0023 (14)	-0.0053 (13)
O27	0.026 (3)	0.042 (3)	0.044 (3)	-0.003 (2)	0.003 (2)	-0.007 (2)
O28	0.026 (3)	0.042 (3)	0.044 (3)	-0.003 (2)	0.003 (2)	-0.007 (2)

supplementary materials

O29	0.026 (3)	0.042 (3)	0.044 (3)	-0.003 (2)	0.003 (2)	-0.007 (2)
O30	0.026 (3)	0.042 (3)	0.044 (3)	-0.003 (2)	0.003 (2)	-0.007 (2)

Geometric parameters (Å, °)

Cd1—O2	2.323 (7)	C7—N14	1.334 (13)
Cd1—O3	2.350 (7)	N9—H9A	0.8800
Cd1—O4	2.367 (10)	N9—H9B	0.8800
Cd1—O1	2.423 (9)	N10—H10A	0.8800
Cd1—S1	2.580 (4)	N10—H10B	0.8800
Cd1—S2	2.598 (4)	N11—H11A	0.8800
S1—C1	1.743 (16)	N11—H11B	0.8800
S2—C2	1.718 (9)	N12—H12A	0.8800
C1—N2	1.312 (18)	N12—H12B	0.8800
C1—N1	1.32 (2)	N13—H13A	0.8800
C2—N4	1.314 (13)	N13—H13B	0.8800
C2—N3	1.325 (12)	N14—H14A	0.8800
N1—H1A	0.8800	N14—H14B	0.8800
N1—H1B	0.8800	O9—H91	0.8206
N2—H2A	0.8800	O9—H92	0.8215
N2—H2B	0.8800	O10—H101	0.8138
N3—H3A	0.8800	O10—H102	0.8211
N3—H3B	0.8800	O11—H111	0.8227
N4—H4A	0.8800	O11—H112	0.8191
N4—H4B	0.8800	Cd4—O12	2.303 (7)
O1—H11	0.8191	Cd4—O14	2.422 (9)
O1—H12	0.8237	Cd4—O13	2.452 (9)
O2—H21	0.8211	Cd4—S10	2.566 (4)
O2—H22	0.8219	Cd4—S9	2.597 (3)
O3—H31	0.8252	Cd4—S8	2.705 (3)
O3—H32	0.8223	S8—C8	1.757 (10)
O4—H41	0.8216	S9—C9	1.752 (10)
O4—H42	0.8133	S10—C10	1.733 (15)
Cd2—O8	2.355 (11)	C8—N15	1.293 (14)
Cd2—O6	2.362 (8)	C8—N16	1.319 (14)
Cd2—O7	2.364 (8)	C9—N18	1.301 (13)
Cd2—O5	2.398 (10)	C9—N17	1.311 (13)
Cd2—S4	2.580 (4)	C10—N20	1.322 (18)
Cd2—S3	2.585 (4)	C10—N19	1.32 (2)
S3—C3	1.731 (11)	N15—H15A	0.8800
S4—C4	1.726 (15)	N15—H15B	0.8800
C3—N5	1.314 (13)	N16—H16A	0.8800
C3—N6	1.320 (13)	N16—H16B	0.8800
C4—N8	1.312 (19)	N17—H17A	0.8800
C4—N7	1.313 (18)	N17—H17B	0.8800
N5—H5A	0.8800	N18—H18A	0.8800
N5—H5B	0.8800	N18—H18B	0.8800
N6—H6A	0.8800	N19—H19A	0.8800
N6—H6B	0.8800	N19—H19B	0.8800
N7—H7A	0.8800	N20—H20A	0.8800

N7—H7B	0.8800	N20—H20B	0.8800
N8—H8A	0.8800	O12—H121	0.8195
N8—H8B	0.8800	O12—H122	0.8146
O5—H51	0.8497	O13—H131	0.8174
O5—H52	0.8208	O13—H132	0.8223
O6—H61	0.8232	O14—H141	0.8179
O6—H62	0.8253	O14—H142	0.8213
O7—H71	0.8188	S11—O16	1.461 (8)
O7—H72	0.8210	S11—O18	1.472 (8)
O8—H81	0.8250	S11—O17	1.484 (9)
O8—H82	0.8146	S11—O15	1.519 (8)
Cd3—O9	2.340 (8)	S12—O19	1.441 (10)
Cd3—O10	2.455 (9)	S12—O21	1.466 (11)
Cd3—O11	2.480 (10)	S12—O22	1.474 (9)
Cd3—S5	2.559 (4)	S12—O20	1.497 (9)
Cd3—S6	2.579 (3)	S13—O26'	1.427 (17)
Cd3—S7	2.700 (3)	S13—O25	1.444 (10)
S5—C5	1.719 (15)	S13—O24	1.448 (9)
S6—C6	1.724 (10)	\$13-023	1.468 (8)
\$7—C7	1.709 (10)	S13-026	1.532 (11)
C5—N10	1 32 (2)	\$13—025'	1.645 (18)
C5—N9	1.32(2)	S14-029	1 459 (10)
C6—N12	1.32(2) 1.304(13)	S14-027	1.129(10) 1.470(11)
C6—N11	1.301(13) 1.321(13)	S14-028	1.170(11) 1.476(10)
C7—N13	1.321(13) 1.321(14)	S14-030	1 494 (9)
C/ 1115	1.521 (14)	514 050	1.474 (7)
O2—Cd1—O3	77.0 (3)	N11—C6—S6	122.1 (8)
O2—Cd1—O4	94.3 (3)	N13—C7—N14	118.3 (9)
O3—Cd1—O4	78.3 (3)	N13—C7—S7	122.2 (8)
O2—Cd1—O1	81.0 (3)	N14—C7—S7	119.5 (8)
O3—Cd1—O1	153.0 (3)	С5—N9—Н9А	120.0
O4—Cd1—O1	88.0 (3)	C5—N9—H9B	120.0
O2—Cd1—S1	166.8 (2)	H9A—N9—H9B	120.0
O3—Cd1—S1	114.2 (2)	C5—N10—H10A	120.0
04-Cd1-S1	82.0 (3)	C5—N10—H10B	120.0
01-Cd1-S1	86.2 (2)	H10A—N10—H10B	120.0
02-Cd1-S2	99.9 (2)	C6—N11—H11A	120.0
03 - Cd1 - S2	86 8 (2)	C6—N11—H11B	120.0
04 - Cd1 - S2	1565(2)	H11A_N11_H11B	120.0
01 - Cd1 - S2	1125(2)	C6—N12—H12A	120.0
S1 - Cd1 - S2	87.92 (13)	C6—N12—H12B	120.0
C1 = S1 = Cd1	104.8(4)	$H12 \Delta N12 H12B$	120.0
$C_2 = S_2 = C_{d1}$	109.0(4)	C7N13H13 A	120.0
N_{2} C_{1} N_{1}	119 5 (14)	C7N13H13R	120.0
$N_2 = C_1 = N_1$	117.3(17) 122.0(11)	H124 N12 H12D	120.0
$\frac{1}{2} - \frac{1}{2} - \frac{3}{2}$	122.0(11) 118.6(11)	$\frac{1113A}{1113} \frac{1113D}{1113}$	120.0
NI = CI = SI $NA = C2 = N2$	110.0 (11)	$C_{1} = 114 + 11$	120.0
N4 C2 S2	117.0(7) 1010(8)	$U_1 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $	120.0
114 - 02 - 52	121.2(0)	$\frac{1114A}{1114} = 1114$	120.0
113-02-32	119.2 (0)	UUJUY	110.3

C1—N1—H1A	120.0	Cd3—O9—H92	116.7
C1—N1—H1B	120.0	H91—O9—H92	106.9
H1A—N1—H1B	120.0	Cd3	112.4
C1—N2—H2A	120.0	H101—O10—H102	107.7
C1—N2—H2B	120.0	Cd3—O11—H111	123.3
H2A—N2—H2B	120.0	Cd3—O11—H112	124.5
C2—N3—H3A	120.0	H111—O11—H112	106.9
C2—N3—H3B	120.0	O12—Cd4—O14	81.1 (3)
H3A—N3—H3B	120.0	O12—Cd4—O13	88.1 (3)
C2—N4—H4A	120.0	O14—Cd4—O13	91.4 (3)
C2—N4—H4B	120.0	O12—Cd4—S10	160.2 (2)
H4A—N4—H4B	120.0	O14—Cd4—S10	79.3 (2)
Cd1—O1—H11	112.7	013 - Cd4 - S10	89.3 (2)
Cd1 = 01 = H12	127.8	012 - Cd4 - 89	97.88 (19)
H11_01_H12	106.9	012 Cd1 S9	1749(2)
Cd1 = 02 = H21	99.3	013 - Cd4 - 89	83 6 (2)
$H_{21} = 02 = H_{22}$	106.9	S10_Cd4_S9	101.34(13)
Cd1 = 03 = H31	104.9	012 Cd4 S8	101.34(13) 88.72(10)
Cd1 = 03 = 1131	137.0	012 - Cd4 - 58	86.72(19)
$H_{21} = 03 - H_{22}$	106.4	013 Cd4 S8	176.4(2)
$\begin{array}{cccc} \text{H31} & \text{H31} \\ \text{Cd1} & \text{H41} \\ \end{array}$	100.4	013 - Cu4 - 30	170.4(2)
Cd1 = 04 = H42	07.6	510 - Cd4 - 58	95.16 (12)
$Cu_1 - 04 - H42$	97.0	$S_{2} = C_{4} = S_{2}$	96.33(11)
141 - 04 - 142	10/./	$C_{0} = S_{0} = C_{14}$	113.7(3)
08 - Cd2 - 06	95.5 (5) 78.0 (2)	$C_{9} = S_{9} = C_{14}$	107.7(4)
08 - Cd2 - 07	78.0 (3)	C10 - S10 - Cd4	105.5 (5)
00 - Cd2 - 07	/5.5 (5)	N15 - C8 - N16	121.0 (9)
08-012-05	90.4 (3)	N15-C8-S8	119.7 (8)
06—Cd2—05	/9.3 (3)	N16-C8-S8	119.1 (8)
0/-Cd2-05	150.8 (3)	N18—C9—N17	121.7 (9)
08—Cd2—S4	82.8 (3)	N18—C9—S9	121.2 (8)
06—Cd2—S4	165.6 (2)	N17—C9—S9	117.1 (8)
07—Cd2—S4	118.0 (2)	N20—C10—N19	119.2 (14)
O5—Cd2—S4	86.3 (2)	N20—C10—S10	122.7 (12)
O8—Cd2—S3	154.4 (2)	N19—C10—S10	118.2 (11)
O6—Cd2—S3	99.1 (2)	C8—N15—H15A	120.0
O7—Cd2—S3	85.6 (2)	C8—N15—H15B	120.0
O5—Cd2—S3	112.8 (2)	H15A—N15—H15B	120.0
S4—Cd2—S3	87.91 (13)	C8—N16—H16A	120.0
C3—S3—Cd2	111.0 (4)	C8—N16—H16B	120.0
C4—S4—Cd2	105.0 (4)	H16A—N16—H16B	120.0
N5—C3—N6	118.7 (10)	C9—N17—H17A	120.0
N5—C3—S3	119.8 (8)	C9—N17—H17B	120.0
N6—C3—S3	121.5 (8)	H17A—N17—H17B	120.0
N8—C4—N7	120.6 (13)	C9—N18—H18A	120.0
N8—C4—S4	118.3 (11)	C9—N18—H18B	120.0
N7—C4—S4	121.1 (11)	H18A—N18—H18B	120.0
C3—N5—H5A	120.0	C10—N19—H19A	120.0
C3—N5—H5B	120.0	C10—N19—H19B	120.0
H5A—N5—H5B	120.0	H19A—N19—H19B	120.0

C3—N6—H6A	120.0	C10—N20—H20A	120.0
C3—N6—H6B	120.0	C10-N20-H20B	120.0
H6A—N6—H6B	120.0	H20A—N20—H20B	120.0
C4—N7—H7A	120.0	Cd4—O12—H121	121.2
C4—N7—H7B	120.0	H121—O12—H122	107.9
H7A—N7—H7B	120.0	Cd4—O13—H131	115.0
C4—N8—H8A	120.0	Cd4—O13—H132	126.2
C4—N8—H8B	120.0	H131—O13—H132	107.3
H8A—N8—H8B	120.0	Cd4—O14—H141	119.0
Cd2—O5—H51	123.5	Cd4—O14—H142	102.3
Cd2—O5—H52	129.5	H141—O14—H142	107.3
H51—O5—H52	104.9	O16—S11—O18	110.8 (5)
Cd2—O6—H61	103.5	O16—S11—O17	109.8 (5)
Cd2—O6—H62	127.4	O18—S11—O17	109.4 (5)
H61—O6—H62	106.4	O16—S11—O15	111.9 (4)
Cd2—O7—H72	110.7	O18—S11—O15	107.1 (4)
H71—O7—H72	107.5	O17—S11—O15	107.8 (5)
Cd2—O8—H81	134.9	O19—S12—O21	110.6 (6)
H81—O8—H82	107.1	O19—S12—O22	111.6 (5)
O9—Cd3—O10	87.9 (3)	O21—S12—O22	110.9 (6)
O9—Cd3—O11	79.7 (3)	O19—S12—O20	106.7 (5)
O10-Cd3-O11	85.6 (3)	O21—S12—O20	109.3 (6)
O9—Cd3—S5	158.8 (2)	O22—S12—O20	107.5 (5)
O10—Cd3—S5	87.8 (2)	O26'—S13—O25	75.7 (8)
O11—Cd3—S5	79.3 (3)	O26′—S13—O24	114.5 (8)
O9—Cd3—S6	97.1 (2)	O25—S13—O24	116.0 (6)
O10—Cd3—S6	85.1 (2)	O26'—S13—O23	122.2 (8)
O11—Cd3—S6	170.2 (2)	O25—S13—O23	112.9 (5)
S5—Cd3—S6	103.29 (13)	O24—S13—O23	111.3 (5)
O9—Cd3—S7	88.8 (2)	O25—S13—O26	107.6 (6)
O10—Cd3—S7	173.9 (2)	O24—S13—O26	105.2 (5)
O11—Cd3—S7	88.7 (2)	O23—S13—O26	102.6 (5)
S5—Cd3—S7	93.29 (12)	O26'—S13—O25'	109.9 (9)
S6—Cd3—S7	100.53 (12)	O24—S13—O25′	99.6 (7)
C5—S5—Cd3	105.9 (5)	O23—S13—O25′	94.9 (7)
C6—S6—Cd3	107.3 (4)	O26—S13—O25′	141.6 (8)
C7—S7—Cd3	113.8 (4)	O29—S14—O27	111.1 (6)
N10—C5—N9	119.0 (14)	O29—S14—O28	109.9 (6)
N10—C5—S5	122.0 (11)	O27—S14—O28	108.7 (6)
N9—C5—S5	118.8 (11)	O29—S14—O30	108.8 (5)
N12—C6—N11	119.1 (10)	O27—S14—O30	108.0 (6)
N12—C6—S6	118.7 (8)	O28—S14—O30	110.2 (6)
O2—Cd1—S1—C1	71.6 (11)	O9—Cd3—S6—C6	-42.3 (4)
O3—Cd1—S1—C1	-140.9 (5)	O10—Cd3—S6—C6	-129.6 (4)
O4—Cd1—S1—C1	145.8 (6)	S5—Cd3—S6—C6	143.8 (4)
01—Cd1—S1—C1	57.3 (6)	S7—Cd3—S6—C6	47.9 (4)
S2—Cd1—S1—C1	-55.4 (5)	O9—Cd3—S7—C7	42.6 (4)
O2-Cd1-S2-C2	20.4 (4)	O11—Cd3—S7—C7	122.3 (5)

O3—Cd1—S2—C2	-55.8 (4)	S5—Cd3—S7—C7	-158.6 (4)
O4—Cd1—S2—C2	-106.0 (8)	S6—Cd3—S7—C7	-54.4 (4)
O1—Cd1—S2—C2	104.7 (5)	Cd3—S5—C5—N10	35.1 (12)
S1—Cd1—S2—C2	-170.2 (4)	Cd3—S5—C5—N9	-148.8 (10)
Cd1—S1—C1—N2	-36.1 (12)	Cd3—S6—C6—N12	-149.3 (8)
Cd1—S1—C1—N1	144.1 (10)	Cd3—S6—C6—N11	34.3 (10)
Cd1—S2—C2—N4	26.5 (10)	Cd3—S7—C7—N13	-80.8 (9)
Cd1—S2—C2—N3	-156.1 (7)	Cd3—S7—C7—N14	102.4 (9)
O8—Cd2—S3—C3	102.8 (8)	O12—Cd4—S8—C8	-42.8 (5)
O6—Cd2—S3—C3	-21.4 (4)	O14—Cd4—S8—C8	-124.0 (5)
O7—Cd2—S3—C3	53.0 (4)	S10-Cd4-S8-C8	156.9 (4)
O5—Cd2—S3—C3	-103.6 (5)	S9—Cd4—S8—C8	55.0 (4)
S4—Cd2—S3—C3	171.3 (4)	O12—Cd4—S9—C9	39.0 (4)
O8—Cd2—S4—C4	-150.5 (6)	O13—Cd4—S9—C9	126.1 (4)
O6—Cd2—S4—C4	-66.4 (11)	S10-Cd4-S9-C9	-145.9 (4)
O7—Cd2—S4—C4	137.2 (5)	S8—Cd4—S9—C9	-50.9 (4)
O5—Cd2—S4—C4	-59.7 (5)	O12-Cd4-S10-C10	138.2 (8)
S3—Cd2—S4—C4	53.3 (5)	O14—Cd4—S10—C10	147.4 (6)
Cd2—S3—C3—N5	157.4 (8)	O13-Cd4-S10-C10	55.9 (6)
Cd2—S3—C3—N6	-21.8 (10)	S9—Cd4—S10—C10	-27.4 (6)
Cd2—S4—C4—N8	-147.2 (10)	S8—Cd4—S10—C10	-126.8 (6)
Cd2—S4—C4—N7	35.7 (11)	Cd4—S8—C8—N15	-103.8 (8)
O9—Cd3—S5—C5	-136.5 (7)	Cd4—S8—C8—N16	80.9 (8)
O10-Cd3-S5-C5	-57.8 (6)	Cd4—S9—C9—N18	-32.9 (9)
O11—Cd3—S5—C5	-143.8 (6)	Cd4—S9—C9—N17	147.3 (7)
\$6—Cd3—\$5—C5	26.6 (5)	Cd4—S10—C10—N20	-32.0 (13)
S7—Cd3—S5—C5	128.2 (5)	Cd4—S10—C10—N19	147.2 (10)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
0.88	2.14	2.958 (16)	154
0.88	2.24	3.11 (2)	168
0.88	2.10	2.927 (15)	156
0.88	2.55	3.111 (14)	122
0.88	2.08	2.934 (15)	163
0.88	2.02	2.875 (14)	165
0.88	2.14	3.014 (14)	169
0.88	2.17	3.000 (13)	157
0.88	2.21	3.028 (12)	155
0.88	2.63	3.183 (12)	121
0.82	1.96	2.743 (13)	160
0.82	1.97	2.770 (12)	164
0.82	2.05	2.636 (12)	128
0.82	2.12	2.856 (18)	150
0.82	1.91	2.679 (10)	156
0.82	1.88	2.691 (13)	172
0.81	2.16	2.973 (12)	173
0.88	2.13	3.000 (11)	171
	D—H 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.83	D —H $H \cdots A$ 0.882.140.882.240.882.100.882.550.882.080.882.020.882.140.882.170.882.210.882.630.821.960.822.050.822.120.821.910.821.910.821.2160.832.13	D—HH···A D ···A0.882.142.958 (16)0.882.243.11 (2)0.882.102.927 (15)0.882.553.111 (14)0.882.082.934 (15)0.882.022.875 (14)0.882.143.014 (14)0.882.173.000 (13)0.882.633.183 (12)0.882.633.183 (12)0.821.962.743 (13)0.821.972.770 (12)0.822.052.636 (12)0.821.912.679 (10)0.821.882.691 (13)0.812.162.973 (12)0.882.133.000 (11)

N6—H6A····O23 ⁱ	0.88	2.14	2.986 (11)	162
N6—H6 <i>B</i> ····O7	0.88	2.17	2.982 (12)	153
N6—H6 <i>B</i> ···O6	0.88	2.59	3.157 (12)	123
N7—H7 <i>A</i> ···O27	0.88	2.08	2.938 (17)	165
N7—H7 <i>B</i> ···O5	0.88	2.06	2.915 (14)	163
N8—H8A····O30	0.88	2.14	2.989 (15)	162
N8—H8 <i>B</i> ····O21 ⁱⁱⁱ	0.88	2.10	2.932 (15)	159
N8—H8 <i>B</i> ····O19 ⁱⁱⁱ	0.88	2.65	3.223 (14)	124
O5—H52…O11	0.82	2.09	2.887 (13)	164
O5—H51…N7	0.85	2.46	2.915 (14)	114
O6—H62···O30 ^{iv}	0.83	1.84	2.641 (11)	162
O7—H72···O22 ^v	0.82	1.95	2.718 (11)	155
O8—H81…O16 ^{iv}	0.83	1.96	2.756 (12)	162
O8—H82…O10 ⁱⁱⁱ	0.81	2.18	2.922 (13)	152
N9—H9A…O21	0.88	2.40	3.150 (17)	143
N9—H9 <i>A</i> ···O20	0.88	2.50	3.320 (16)	156
N9—H9 <i>B</i> ····O27	0.88	1.98	2.834 (17)	164
N10—H10 <i>A</i> ···O21	0.88	2.26	3.040 (17)	148
N10—H10 <i>B</i> ···O10	0.88	2.10	2.954 (15)	163
N11—H11 <i>A</i> ···O18 ⁱ	0.88	1.98	2.855 (12)	177
N11—H11 <i>B</i> ···O9	0.88	2.13	2.994 (12)	167
N12—H12 \mathcal{A} ···O17 ⁱ	0.88	1.93	2.797 (12)	169
N13—H13 <i>A</i> ····Q2 ^{iv}	0.88	2.36	3.193 (11)	158
N13—H13 B ····O2 8^{iv}	0.88	1.98	2 848 (13)	168
$N14$ — $H144$ ···· $O26^{i}$	0.88	2.22	2.010(13) 2.980(13)	145
$O9 - H91 \cdots O28^{iv}$	0.82	2.03	2.800(12) 2.810(12)	159
$O9 - H92 \cdots O20^{iv}$	0.82	1 94	2 721 (11)	159
O9 H92 O20	0.82	2 54	3,189(10)	137
010—H101····09	0.81	2.54	3 331 (11)	139
$010 - H102 \cdots 025'^{iv}$	0.82	1.77	2 57 (2)	164
010 - H102 - 025	0.82	1.99	2.37(2) 2.761(13)	156
011—H111…025iv	0.82	2.15	2.761 (13)	143
011 H111 $025'$	0.82	2.13	2.031 (14)	163
011 H112 029^{iv}	0.82	1.96	2.972(10) 2 718(13)	153
N15 H154030	0.82	2.44	2.710(13) 3.222(12)	1/18
N15—H154…N8	0.88	2.44	3.222(12) 3.331(15)	131
N16—H164···O6 ^{vi}	0.88	2.09	3.184(11)	161
N16 $H16BO23^{ii}$	0.88	1 00	2 866 (11)	172
N10 $$	0.88	1.99	2.800(11) 2.864(13)	176
N17 - H17A = O21 $N18 + H18A = O22$	0.88	1.99	2.804(13) 2 846(12)	160
N18 H18 <i>P</i> 012	0.88	2.15	2.040(12)	163
	0.88	2.13	2.336(11) 2.174(15)	105
N19—1119A····O17	0.88	2.42	3.174(13) 3.258(15)	145
N10 H10 R $O2^{4i}$	0.88	2.73	2.230(13) 2.887(15)	162
$1177 - 1117D^{-1}024$ N10 H10R025 ⁴	0.00	2.03	2.007(13)	100
$1 \times 17 - 170 = 1023$ N20 H204017vii	0.00	2.05	3.27(2)	129
$1120 - 1120A - 017^{-1}$	0.00	2.21	3.010(10) 2.066(15)	133
1120 - 11200 - 11013	0.00	2.11	2.900(13)	167
012 - 1121 - 023	0.82	2.04	2.840 (10)	10/
U12—H122…U10 ^v ···	0.81	2.00	2.740 (9)	140

supplementary materials

O13—H131…O19 ⁱⁱ	0.82	1.88	2.694 (12)	171	
O13—H132…O4 ⁱⁱⁱ	0.82	2.23	2.981 (12)	153	
O14—H141…O20 ⁱⁱ	0.82	1.90	2.714 (11)	173	
O14—H142…O25 ⁱⁱ	0.82	2.10	2.750 (14)	135	
O14—H142…O25′ ⁱⁱ	0.82	2.00	2.79 (2)	161	

Symmetry codes: (i) *x*+1, -*y*+1, *z*-1/2; (ii) *x*, -*y*+1, *z*-1/2; (iii) *x*, *y*+1, *z*; (iv) *x*+1, *y*, *z*; (v) *x*+1, *y*+1, *z*; (vi) *x*-1, *y*, *z*; (vii) *x*+1, -*y*+2, *z*-1/2; (viii) *x*, -*y*+2, *z*-1/2.